If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+25x+30.35=0
a = 1; b = 25; c = +30.35;
Δ = b2-4ac
Δ = 252-4·1·30.35
Δ = 503.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-\sqrt{503.6}}{2*1}=\frac{-25-\sqrt{503.6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+\sqrt{503.6}}{2*1}=\frac{-25+\sqrt{503.6}}{2} $
| 3.3+9.7x=44.8 | | 2x–5=-9 | | 7-2n=4n+25 | | 6x+18x-2=6(4x+8) | | -7+3+8n+4=6n-5n | | -10-6x=17-8x | | -5(3x+1)-3x-2=31 | | 5n+2=-2n+23 | | 52-5y=-8 | | 6c+4=3c–2 | | 11/2(4n+2)=19 | | 0×v=0 | | b/4+3=1 | | 2-5p=11-2p | | 2t+9=-1 | | 6^(2x+3)-10^(x+2)-156=0 | | 126=9(x-6) | | 8x+7+9x+16=90 | | 12(x+2)=-4(x+2() | | -66=6(y-9) | | 3n-19=-4 | | 9-8v=-31 | | 125=10(x-50)=55 | | 6x-9x=7+2x | | 38=-2(k-4) | | x-7/2x+5/4=-5/6(x-1/3) | | -3x+0=21 | | 5 + 2 ( 13 + y )- 10 = 89 | | -2|n|+8=4 | | 25+4.50x=52 | | 3/x-1=5/x+2 | | 2.7x+100=7.29+10x |